Tuesday, August 30, 2016

Hackerrank - Easy GCD

We call a sequence of  non-negative integers, awesome if there exists some positive integer such that each element  in  (where ) is evenly divisible by . Recall that  evenly divides  if there exists some integer  such that .
Given an awesome sequence, , and a positive integer, , find and print the maximum integer, , satisfying the following conditions:
  1.  is also awesome.
Input Format
The first line contains two space-separated positive integers,  (the length of sequence ) and  (the upper bound on answer ), respectively. 
The second line contains  space-separated positive integers describing the respective elements in sequence  (i.e., ).
Constraints
Output Format
Print a single, non-negative integer denoting the value of  (i.e., the maximum integer  such that  is awesome). As  is evenly divisible by any , the answer will always exist.
Sample Input 0
3 5
2 6 4
Sample Output 0
4
Explanation 0
The only common positive divisor of , and  that is  is , and we need to find  such that . We know  because  would not evenly divide . When we look at the next possible value, , we find that this is valid because it's evenly divisible by our  value. Thus, we print .
Sample Input 1
1 5
7
Sample Output 1
0
Explanation 1
Being prime,  is the only possible value of . The only possible  such that  is  (recall that ), so we print  as our answer.
Solution:
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3.  
  4. vector <int> PF;
  5.  
  6. void primeFactors(int n){
  7.     while (n%2 == 0){
  8.         PF.push_back(2);
  9.         n = n/2;
  10.     }
  11.     for (int i = 3; i <= sqrt(n); i = i+2){
  12.         while (n%== 0){
  13.             PF.push_back(i);
  14.             n = n/i;
  15.         }
  16.     }
  17.     if (> 2)PF.push_back(n);
  18. }
  19.  
  20. int main(){
  21.     int n, k, x;
  22.     scanf("%d"&n);
  23.     scanf("%d"&k);
  24.     int g, f = 0;
  25.     for(int i = 0; i < n; i++){
  26.         scanf("%d"&x);
  27.         if(!f){
  28.             f = 1;
  29.             g = x;
  30.         }
  31.         g = __gcd(g, x);
  32.     }
  33.     if(< 2)return 0*puts("0");
  34.     primeFactors(g);
  35.     int sz = PF.size();
  36.     int mx = 0;
  37.     for(int i = 0; i < sz; i++){
  38.         int z = k/PF[i];
  39.         mx = max(mx, z*PF[i]);
  40.     }
  41.     printf("%d\n", mx);
  42.     return 0;
  43. }

No comments:

Post a Comment